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Abstract: Gliomas are diffuse and hard to cure brain tumors. A major reason for their 
aggressive behavior is their property to infiltrate the brain. The gross appearance of the 
infiltrative component is comparable to normal brain, constituting an obstacle to extended 
surgical resection. 5-ALA induced PpIX fluorescence measurements enable gains in 
sensitivity to detect infiltrated cells, but still lack sensitivity to get accurate discrimination 
between the tumor margin and healthy tissue. In this fluorescence spectroscopic study, we 
assume that two states of PpIX contribute to total fluorescence to get better discrimination of 
healthy tissues against tumor margins. We reveal that fluorescence in low-density margins of 
high-grade gliomas or in low-grade gliomas is mainly influenced by the second state of PpIX 
centered at 620 nm. We thus conclude that  consideration of the contributions of both states to 
total fluorescence can help to improve fluorescence-guided resection of gliomas by 
discriminating healthy tissues from tumor margins. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1 Introduction 

Diffuse gliomas account for more than fifty percent of primitive brain tumors and are 
currently hardly curable. All subtypes share the same highly infiltrative behavior of individual 
tumor cells. However surrounding infiltrated tissue often resemble normal tissues. The world 
health organization (WHO) classifies gliomas in 4 grades [1], but most studies commonly 
consider two separate groups having different biological, molecular and tissue properties: 
High Grade Gliomas (HGG) and Low Grade Gliomas (LGG). HGG are mainly malignant 
tumors (grades III and IV of WHO classification), while LGG are benign tumors (grades I 
and II). In both groups, infiltrative tumor cells are still difficult to identify during surgery. 
Studies have shown that in 85% cases, recurrences of HGG are localized less than 2 
centimeters from the first tumor [2]. Improving the extent of resection prooved to prevent 
recurrence and improve life quality as well as life expectancy [3–5]. 

Pre-operative MRI combined with neuro-navigation is currently used to localize surgical 
tools and tumor cells in the operating theater [6,7] but it shows strong limitations. Indeed, 
MRI lacks sensitivity to detect tumor margins [8,9]. Furthermore, the brain shift can reach up 
to 3 cm in comparison with pre-operative MR images [10]. In order to prevent any 
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localization error due to the brain shift, intraoperative MRI has been suggested. Nonetheless, 
intraoperative MRI complicates the surgery and has the inherent lacks of sensitivity of MRI to 
detect tumor margins, which makes it barely used. 

As a complementary method to pre-operative MRI, fluorescence microscopy has shown 
its relevance in neuro-oncology [11–15] and 5-aminolevulonic acid (5-ALA) induced 
fluorescence of protoporphyrin IX (PpIX) is currently used through surgical microscopes 
[16]. PpIX takes part in the biosynthesis of heme and ingestion of 5-ALA, precursor in 
heme’s biosynthesis, leads to temporary enhancement of PpIX concentration in gliomas [17]. 
PpIX absorbs light around 405 nm and emits a reddish fluorescence with a main peak 
centered at around 634 nm. PpIX fluorescence-guided resection of gliomas through surgical 
microscopes enabled to gain 6 months life expectancy for HGG [18]. This technique is the 
actual clinical standard for PpIX-based surgical assistance. It is also investigated for 
intracranial stereotactic biopsies [19,20]. However, its sensitivity is still limited when applied 
to low density infiltrative parts of HGG [21,22] or to LGG [23]. Some studies also emphasize 
that the link between the subjective fluorescence intensity scale chosen by the surgeon and the 
pathological status of tissues is still to be clarified [24,25]. 

To overcome sensitivity issues, various 5-ALA induce PpIX fluorescence spectroscopy 
methods have been proposed. These studies could be classified into two main approaches, 
either assessing quantitative concentration of PpIX, or qualitative or semi-quantitative 
biomarkers related to PpIX fluorescence. Quantification of PpIX concentration has been 
proposed with combined measurements of fluorescence spectroscopy and reflectance to 
correct tissue distortions [26,27]. This technique is more sensitive than fluorescence 
microscopy for HGG [28]. It has also been used in LGG but its sensitivity is yet only up to 
45% [29]. Some works proposed normalization procedures or other qualitative or semi-
quantitative biomarkers to increase the robustness of PpIX fluorescence measurement [19,30–
32]. It should be pointed out that both approaches are relevant because all these 
measurements are intermediary steps toward the final aim of PpIX fluorescence 
measurements, which is the classification of measurements into relevant pathological status. 

Quantification techniques rely on the assumption that the emitted PpIX fluorescence 
intensity is proportional to the concentration of PpIX. This is supported by the link between 
the fluorescence emitted intensity and the tumor cellular density [17,33,34]. However, some 
studies showed more complex links between the PpIX concentration and the shape of 
fluorescence spectra. A study on biopsies from 5 patients suggests a wavelength shift of the 
peak intensity of the emitted spectrum in a tumor and nontumor regions [31]. Another study 
on biopsies raised the presence of two states of PpIX with different fluorescence spectra, 
peaking at 634 nm and also at 620 nm, in HGG as well as in LGG [32]. 

The presence of the second peak of fluorescence of PpIX at 620 nm is known in solution 
and closely linked with the chemical microenvironment [35–38]. This peak has been observed 
in tissues [32,39–41] or in cell culture [42,43]. But its origin in vivo is still an open issue. 
Some works support the assumption that the origin of the peak at 620 nm in vivo is a different 
aggregate of PpIX [32,42]. Other works [39,43] explained it by precursors of uroporphyrins 
or coproporphyrins. 

The present study aims at investigating the presence of the second peak of fluorescence of 
PpIX at 620 in non-extracted and freshly extracted living brain tissues, and its correlation 
with the pathological status of tissues. To do so, we conducted a feasibility clinical trial on 10 
patients. An intra-operative fluorescence spectroscopy system has been developed to measure 
fluorescence spectra of tissues with different pathological status, from healthy tissues to 
tumor, in HGG and LGG. The complexity of the fluorescence spectra has been investigated 
by a fitting process considering the two states of PpIX, peaking at 634 nm and also at 620 nm. 
This led to the definition of new biomarkers of PpIX fluorescence emission, which rely on the 
concentration of both states of PpIX. These results suggest that these biomarkers could 
increase the sensitivity of the 5-ALA induced PpIX fluorescence in low density margins and 
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cleaved so that excited tissue area and emitting tissue area are the same. Light goes through a 
low pass filter with a rejection band between 450 nm and 700 nm. This led to an output 
irradiance of 30 W/m2. Light was collected through the same probe, with a detection fiber 
(600 µm diameter) that is placed in the center. Light is then sent to a high pass filter with an 
in-band transmission between 485 nm and 1200 nm. The filtered light was finally injected 
into a spectrometer (Maya2000, Ocean optics). 

Sterilization of the probe was performed by autoclave process, as recommended by 
French laws. This implies a steam cycle reaching 134°C and a relative variation of pressure of 
+ 2 bars and −1 bar. Prion risk was tackled with a manual cleaning with an ALKA100 
solution (Alkapharm). 

2.3 Surgical procedure and data acquisition 

Patients were given an oral dose of 20 mg/kg of body weight of 5 amino-levulinic acid 
(Gliolan; Medac GmBH) approximately 3 hours prior to the induction of anesthesia. The 
patient’s head was prepared and registered using a StealthStation Treon image-guidance 
system (Medtronic) following standard practice. A Zeiss OPMI Pentero surgical microscope 
(Carl Zeiss Surgical GmbH) modified for fluorescence guidance with a 400-410 nm 
wavelength source for excitation and a 620-710 nm bandpass filter to record fluorescence 
emissions on a sensitive 3-chip CCD camera was also coregistered with the surgical field. 

For each patient, standard surgical procedure started in order to expose the expected 
tissue. When asked by the surgeon, surgical procedure was stopped and fluorescence study 
started. Visual fluorescence was evaluated through surgical microscope. Then, the probe was 
placed on the tissue to be analyzed, light of the room were lowered and in vivo spectroscopic 
measurements started. Each acquisition was composed of 200 ms of duration with the LED 
turned on followed by the same duration with the LED turned off to get rid of ambient light 
coming from the operating room. For each measurement, 12 acquisitions were led, giving a 
total acquisition time of 4.8 s. The tissue was then removed from the brain and a new 
measurement was performed on the biopsy (named “ex vivo measurement” thereafter) before 
sending it for histopathological analysis. These fluorescence measurements were performed 6 
to 8 times per patient at various stages of surgery. Since the goal of this study is to address the 
critical stage of minimum visible residual tumor, most of the samples were chosen at the 
sensitivity limits of the surgical microscope and MR images or beyond them. 

In total, 174 measurements were performed and 143 were kept in this analysis. 31 
measurements were removed either because they showed no detected fluorescence signal, or 
due to heterogeneous pathological status, or due to failure to comply with part of the 
procedure. 

2.4 Histopathology 

Histopathological analysis was performed on formalin fixed paraffin embedded biopsy tissue 
specimens processed for HES staining. Each H & E stained tissue section was assessed for the 
presence of tumor cells, necrosis, mitotic activity, nuclear atypia, microvascular proliferation 
and reactive astrocytosis. Molecular criteria were also assessed. Biopsy specimens were then 
classified according to WHO histopathological and molecular criteria [1]. Samples were 
sorted into 5 groups according to their histopathological appearance: HGG solid part, HGG 
margin, HGG margin of low density, LGG and healthy tissue. Samples classified as 
“heterogeneous” i.e containing morphological aspects of 2 different categories by the 
pathologist were removed from the study. 

2.5 Data pre-processing 

For each measurement (in vivo or ex vivo) of each analyzed tissue, emission spectra was 
obtained as follow: i) each ‘off’ spectrum was subtracted from the previous ‘on’ spectrum to 
get 12 fluorescence spectra ii) the 12 spectra were summed up to obtain 1 emitted spectrum 
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magnitude). The second one is the HGG low density margins and LGG where the mean 
contribution of the state 620 is slightly higher than the one of the state 634. The third group is 
the healthy tissues where the mean contributions of each state are almost equal and the total 
contribution of the two states is lower than the other groups. Table 1 displays the numerical 
values featured in Fig. 3 as well as PpIX fluorescence intensity, evaluated by integrating the 
fluorescence fitted curve between 600 and 650 nm, and central wavelength of the 
fluorescence spectrum in the same range. The central wavelength was defined to be the 
average wavelength of the interval representing more than 80% of the maximum’s 
fluorescence intensity. 

Table 1. mean value and standard error of estimated biomarkers: fluorescence intensity 
between 600 nm and 650 nm; Central wavelength and contribution of each state. 

Results HGG solid part HGG margins 
HGG low 
density margins 

LGG Healthy 

Fluorescence intensity 
600-650 nm (au) 2362.0 +/− 483.5 

251.4 +/− 
119.9 

48.9 +/− 6.6 45.7 +/− 6.4 30.0 +/− 6.2 

Central wavelength 
(nm) 634.8 +/− 0.2 633.2 +/− 0.6 629.0 +/− 0.5 627.1+/− 0.8 633.4 +/− 1.5 

Contribution of State 
634 (au) 59.62+/− 12.37 5.99 +/− 3.06 0.59+/− 0.08 

0.44 +/− 
0.08 

0.43 +/− 0.08 

Contribution of State 
620 (au) 0.31 +/− 0.16 0.37 +/− 0.05 0.78 +/− 0.10 

0.72 +/− 
0.11 

0.40 +/− 0.10 

 
Table 1 confirms the decrease of total fluorescence intensity when the concentration of 

tumor cells decreases for HGG, with one to two orders of magnitude of fluorescence intensity 
higher in solid part of HGG (~2300) than in the others classes (between 30 and 250). 
Comparing the central wavelength, a shift to lower wavelengths (from 635 nm to 629 nm) 
appears with decreasing concentration of tumor cells for HGG, as exposed by [31]. The 
central wavelength value appears to be lower for LGG and HGG low density margins than the 
others. Finally, the contribution of State 634 decreases from 59 to 0.43 as the concentration of 
tumor cells decreases, while the contribution of State 620 increases from 0.31 to 0.72, apart 
for healthy tissues where contributions of the two states are low. 

3.2 Ratio of the two contributions 

The ratio of the two contributions (α620/ α634) is drawn on Fig. 4 for each state. This ratio was 
computed in order to compare it with previous results on biopsies [32]. This ratio tends to 0 in 
solid parts of HGG and increases as the density of tumor cell decreases. In HGG low density 
margin and LGG the ratio is higher than 1 and reach around 1.5 in LGG, showing the 
preponderance of State 620 in LGG. However, this ratio decrease and tends to 1 in healthy 
tissues. 
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Fig. 6. SNR634 versus SNR620 for LGG. Markers reveal anatomo-histopathological 
classification: LGG (black circles) and healthy tissues (green triangle). Dotted line shows the 
equality of both SNR contributions. 

Figure 5 confirms that HGG solid part has an overwhelming contribution of SNR634 and 
almost no contribution of SNR620. Most of the HGG margins are above the equal contribution 
line (dotted line) showing a preponderance of SNR634. Whereas the HGG low density margins 
are below this line, showing a preponderance of SNR620. Healthy tissues from the HGG 
patients are more unequally spread but seem to concentrate in the low SNR of both states 
region. This figure indicates clearly a different behavior for these four different pathological 
classes. However, the number of measurements is too low to investigate the statistical 
relevance of this assumption. This remark is even more striking with the patients of LGG of 
the Fig. 6. Indeed, the LGG samples have SNR values clearly higher than healthy tissues, 
even though, as for HGG, no statistical tests support this assumption. 

4. Discussion 

This study confirms the predominance in vivo of the commonly studied State 634 of PpIX in 
the tumor cells high-density regions of HGG (solid part and margin classes) where the ratio 
(α620/ α634) is close to 0. It is not the case in low-density tumor cells regions (low-density 
margin of HGG and LGG) where this ratio is higher than 1. 

4.1 Low PpIX fluorescence intensity in low-density tumor cells regions 

The contribution of state 634 is 10 to 100 times higher in high-density tumor cells regions as 
compared to healthy or low density tumor cells regions. This should be related to the actual 
sensitivity issues of the 5-ALA induced PpIX fluorescence surgical microscopy in the low 
density margin of HGG [21,22] and in LGG [23]. Surgical microscopy fluorescence intensity 
was also assessed in this study. Data, not shown here, confirm that samples with fluorescence 
detected with the microscope are mainly localized in high-density tumor cells regions where 
the contribution of State 634 widely dominates. Quantification of PpIX concentrations is 
more sensitive than fluorescence microscopy but also shows sensitivity issues in low density 
tumor cells regions in HGG [28] or LGG [29].These techniques rely on the assumption that 
the emitted PpIX fluorescence intensity is proportional to the concentration of PpIX. This is 
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supported by the link between the fluorescence emitted intensity and the tumor cellular 
density [33,34]. However, some studies show that the microenvironment could have an 
important role in the intensity of fluorescence. Indeed, a strong 5-ALA induced fluorescence 
intensity has been observed in a patient showing only inflammatory cells without tumor cells 
[47]. Furthermore, PpIX accumulation is known to be sensitive to gene expression [48] or 
metabolic pathways [49]. Our study shows the predominance of State 620 of PpIX in these 
low-density tumor cells regions. It also shows that the contribution of State 620 is twice 
higher in these low-density tumor cells regions as compared to healthy and high-density 
tumor cells regions. It should be pointed that the fluorescence quantum yield of the two 
aggregates of PpIX are very different, the one of State 634 being far higher than the one of 
State 620 [36]. Then, a decrease in fluorescence intensity might not only reveal a decrease in 
PpIX concentration but also a change of PpIX aggregate, in favor of State 620 [37]. Our 
results suggest that the decrease of PpIX fluorescence intensity in low-density tumor cells 
regions [21–23] attributed mainly to low PpIX concentrations could also be linked to a 
different aggregation of PpIX in these regions, due to a microenvironment favoring the PpIX 
State 620. The similarities in the PpIX fluorescence behaviors in LGG and HGG low density 
margins could be explained by biological processes rather close from each other: presence of 
infiltrative but not joined tumor cells without blood brain barrier breakage around. 

4.2 Towards a discrimination between healthy tissues and margins 

This study shows the low contribution of both states of PpIX in healthy tissues, which is 
consistent with previous study showing low PpIX concentration [17,27,50]. The contribution 
of State 634 is constant in healthy tissues and in LGG, and increases of only 37% in low 
density margin of HGG. This is consistent with the actual sensitivity issues of the 5-ALA 
induced PpIX fluorescence surgical microscopy in HGG and LGG [21–23]. However, the 
contribution of State 620 is 80% higher in LGG and 95% higher in low density margins of 
HGG than in healthy tissues. This opens new insights in the use of this technique during HGG 
and LGG neurosurgery to discriminate healthy tissues from margins. 

4.3 Blue shift of PpIX fluorescence spectrum in low-density tumor cells regions 

Table 1 shows a shift of the central wavelength of emitted spectra towards short wavelengths 
when the density of tumor cells decreases. This shift is almost of 6 nm for low-density tumor 
cell margins of HGG and even 8 nm in LGG. A study on biopsies also suggests a shift in the 
same direction of the peak intensity of the emitted spectrum when the density of tumor cells 
decreases [31], but with a lower magnitude of around 2 nm ± 2 nm. However, in this latter 
study the wavelength shift was investigated in a margin sample. Then, it is consistent with the 
shift from high to low density in our study, which was 4 nm. The presence of a second peak 
of fluorescence at 620 nm, which produces this shift, has been shown in tissues [32,39–41] or 
in cell culture [42,43]. It is known that such a shift can be induced by a change in PpIX 
aggregation, which modifies the proportions in State 634 and State 620 of PpIX [35–38]. 
Hence, the blue shift measured in this study in low-density cell tumor region is another 
indication that HGG margins and LGG could produce a different aggregation of PpIX, due to 
a microenvironment favoring State 620 of PpIX. 

4.4 Ratio of PpIX contributions 

Our previous study explored the ratio of the two contributions of PpIX in HGG and LGG, and 
showed significant difference between the solid part and margins of HGG [32]. The present 
study explores this ratio with more precision according to the tumor cell density in tissues. In 
HGG, the ratio in high density margins is very close to the ratio in the solid part. The 
significant difference is between the high-density to low-density tumor cell regions, where the 
ratio reaches values higher than 1. It seems that the relevance of the ratio to discriminate 
tissues status would rather be in the high to low density transition, instead of solid part to 

                                                                      Vol. 10, No. 5 | 1 May 2019 | BIOMEDICAL OPTICS EXPRESS 2487 



margin transition as was suggested earlier [32]. In LGG, the ratio is very close to the one 
observed on low-density tumor cells region of HGG. This confirms the similar PpIX 
fluorescence behavior that seems to appear in LGG and low-density tumor cell region of 
HGG, as discussed above. In healthy tissues, the ratio is close to 1. Its relevance to 
discriminate healthy tissues from margins has to be investigated further. 

4.5 Origin of the fluorescence peak at 620 nm in vivo 

The presence of the second peak of fluorescence of PpIX at 620 nm is known in solution and 
closely linked with the chemical microenvironment [35–38]. In particular, PpIX is known to 
be pH related [32]. The state 620 of PpIX is favored by high pH and the state 634 is favored 
by low pH. Our results show that the fluorescence peak at 620 nm is preponderant in low-
density tumor cells regions; whereas the fluorescence peak at 634 nm is preponderant in high-
density tumor cells regions. This can be related to higher acidity in high-density tumor cells 
regions of HGG as compared to low-density tumor cells regions of HGG and in LGG since it 
is known that the tumor tissues acidity is correlated to the grade of glioma because of high 
glycolytic activity [18]. This tends to suggests that the peak at 620 nm is due to a different 
aggregate of PpIX. However, this study did not retrieve a preponderance of either states of 
PpIX in healthy tissues. In particular, the contribution of state 620 is not higher than the one 
of state 634, which would be consistent with the hypothesis of a high pH stated above. 
Moreover, PpIX is lipophilic; in vivo, its distribution is mainly intra-mitochondrial and PpIX 
is in contact with the lipid membrane of mitochondria, so its microenvironment is quite 
complex. Furthermore, some results indicate that in ALA-induced and tumor conditions PpIX 
could spread outside the mitochondria and be partly sensitive to cytosolic microenvironment 
[51]–[53], or even to extracellular microenvironment [51]. Some works support the 
assumption that the origin of the peak at 620 nm in vivo is a different aggregate of PpIX 
[32,42]. Other works [39,43] explained it by precursors of uroporphyrins or coproporphyrins. 
This point is still controversial and should be explored, but it is out of the scope of this study. 

4.6 Towards classification biomarkers in HGG and LGG 

We investigated the relevance of simple biomarkers, the SNR, directly extracted from this 
data set with the idea of going towards a classification process into relevant pathological 
status. It should be emphasized that this is only preliminary work to evaluate the relevance of 
this way. We separated HGG and LGG, but this process does not imply a classification of 
LGG versus HGG. The grade of glioma is evaluated before the surgery by other means. We 
used the same four classes for HGG and two classes for LGG as the one used before in this 
study. This classification is rather subjective and dependent on the histopathologist. Indeed, 
we sampled a continuous process (density of tumor cells) that can induce a bias. In HGG, Fig. 
5 shows the solid part along the state 634 axis and clearly distincts it from the other groups. 
The low density and high density margins groups are also distinct from each other, with a 
separation line which arises from the equal contributions line. Finally, the healthy tissues 
group seems somehow mixed with the margins groups, but the low contributions are 
apparent. In LGG, Fig. 6 shows a clear distinction between LGG and healthy tissue. Some 
studies emphasize the fact that the link between the subjective fluorescence intensity scale 
chosen by the surgeon in fluorescence microscopy and the pathological status of tissues is still 
to be clarified [24,25]. Furthermore, classification based on fluorescence of PpIX is used in 
LGG but show lower sensitivity and specificity [29] than in HGG. Then our results seems 
rather different, showing that classification based on state 634 and state 620 could highly 
improve the intraoperative classification efficiency. 

4.7 Model of fluorescence emission 

The fluorescence emission model used in the parametric data analysis has been discussed 
previously in detail [32,37]. However further improvements are added in these study with the 
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fitting of lipofuscin. Lipofuscin concentration is known to be localized around the nucleus of 
neuronal cells, and its fluorescence emission spectrum shape is known to be linked with 
aging, oxidation degree and cell stemness degree [46]. The relevance of measuring lipofuscin 
fluorescence in gliomas can be found in [49] to avoid bias in quantification of the PpIX 
concentration. Thaw et al [51] presents that fluorescence intensity of Lipofuscin is higher in 
glial than in glioma cells. As the presence of glioma cells makes glial cell density decrease, 
the Lipofuscin fluorescence intensity is lower in the solid part or high density margins of the 
tumor than in heathy tissues and low density margins of the tumor. Data not shown here 
demonstrate a linear relationship between lipofuscin fitting coefficient and the age of the 
patient. The oxidation degree has been observed as well since the contribution of lipofuscin 
appeared to be higher in ex vivo measurements than in in vivo ones for an identical sample. 
Thus lipofuscin fluorescence intensity cannot be neglected in some cases. As the shape of 
lipofuscin fluorescence is a Gaussian curve and the central wavelength is around 585 nm [11], 
the contribution of the state 620 is overestimated compared to the one of the state 634 if 
lipofuscin fluorescence is not extracted. Thus, lipofuscin fluorescence must be extracted to 
avoid bias in the contributions of both states and between the samples whatever the patient 
age and the measurement condition (ex vivo or in vivo). 

5. Conclusion 

In this study, we added the contribution of a second state of PpIX (named State 620) to the 
well-known and commonly used reference spectra of PpIX (named State 634) to analyze 
fluorescence spectra of glioma. The goal of this intraoperative clinical trial was to investigate 
the low sensitivity of fluorescence measurements in low density margins of HGG and LGG 
and to confirm the power of the second peak of PpIX to help discriminate glioma against 
healthy tissues. To do so, a linear fitting process was implemented and new biomarkers 
appeared to be of great interested. Those biomarkers, α620 and α634 first and then SNR620 and 
SNR634 are quick easy to get intraoperatively and could thus help improve fluorescence 
guided resection of glioma. Indeed, those results confirm that the contribution of State 634 
dominates in HGG and their high density margins. What is more, they reveal that the 
contribution of State 620 is higher than the one of State 634 in low density margins of HGG 
and in LGG. Blue shift of the central wavelength when the density of tumor cells decreases 
confirms the weight of State 620 in low density margins. Those results could help understand 
the lack of sensitivity of current techniques, looking for State 634 where the dominant state is 
State 620. Based on those two states, the next step is to increase data set and investigated new 
supervised and unsupervised classification methods to make the discrimination even more 
robust. Using both states, the discrimination between healthy tissues and regions with a low 
density of tumor cells appears to be feasible for HGG and LGG as well, offering new 
opportunities to increase the sensitivity of fluorescence measurements and thus improve the 
extent of resection and reduce recurrence. 
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